MATHCHAT

April 19, 2001

Old Challenge (Joe Shipman). Larry King a spus în rubrica sa din USA Today că există 293 de moduri de a face mărunțiș pentru un dolar. Este corect acest lucru? (Să presupunem că numai cupiurile bătute în prezent.)

Răspuns. Da, dacă numărați o monedă de un dolar în rest. Raymond Hettinger a enumerat toate cele 293 de posibilități, anexate la sfârșitul coloanei. Michael Caulfield a numărat cele 292 de posibilități, altele decât o monedă de un dolar, după cum urmează:

Dat fiind că se va folosi o jumătate de dolar, există 50 de combinații:
încă o jumătate de dolar (1 sens)
2 monede de 25 de cenți (1 sens)
1 monedă de 25 de cenți cu: 2 monede de 10 cenți (2 moduri), 1 monedă de 10 cenți (4), sau 0 monede de 10 cenți (6).
0 monede de 25 cenți cu: 5 monede de 10 cenți (1), 4 (3), 3 (5), 2 (7), 1 (9) sau 0 (11).

Dat fiind că nu se vor folosi jumătăți de dolar, există 242 de combinații:
4 monede de 25 cenți (1 cale)
3 monede de 25 cenți cu:
4 monede de 25 cenți (1 cale)
3 monede de 25 cenți cu: 2 monede de 10 cenți (2 moduri), 1 (4), sau 0 (6).
2 monede de 25 cenți cu: 5 monede de 10 cenți (1), 4 (3), 3 (5), 2 (7), 1 (9), sau 0 (11).
1 monedă de 25 cenți cu: 7 monede de 10 cenți (2), 6 (4), 5 (6), 4 (8), 3 (10), 2 (12), 1 (14), 0 (16)
0 sferturi cu: 10 dimes (1), 9 (3), 8 (5), 7 (7), 6 (9), 5 (11), 4 (13), 3 (15), 2 (17), 1 (19), 0 (21).

Torsten Sillke a discutat despre modul în care astfel de calcule pot fi realizate cu funcții generatoare. Vezi Herbert’s Wilf’s „Lectures on Integer Partitions” (pagina 10) la http://www.math.upenn.edu/~wilfRăspunsul la problema noastră (293) este coeficientul lui x^100 în reciproca următoarelor:

(1-x)(1-x)(1-x5)(1-x10)(1-x25)(1-x50)(1-x100)

Al Zimmermann a furnizat următorul tabel cu numărul de moduri în care se pot schimba diverse unități monetare cu unități monetare mai mici:

.

Unitate monetară Numărul de moduri de a face schimb
1 cenți 0
5 cenți 1
10¢ 3
25¢ 12
50¢ 49
$1 292
$2 2,728
$5 111,022
$10 3,237,134
$20 155,848,897
50$ 58.853.234.018
100$ 9.823.546.661.905

Zimmermann a adăugat: Am permis bancnote de 2 dolari. Nu am făcut distincție între monedele de 1 dolar și bancnotele de 1 dolar în rest. M-am gândit la asta și am decis că, dacă am făcut distincție, atunci ar trebui să fac distincție și între cele 50 de monede de 25 de cenți diferite care se emit acum. Și chiar nu am vrut să fac asta.

După Caulfield și Zimmermann și contestându-l pe Larry King, Walter Wright spune că o monedă de un dolar nu poate fi considerată rest pentru o bancnotă de un dolar: Webster’s New World Dictionary definește restul ca fiind „un număr de monede sau bancnote a căror valoare totală este egală cu o singură monedă sau bancnotă mai mare.”

Matematică discutabilă. Al Zimmermann raportează că: „Cu aproximativ trei ani în urmă am mers la un bancomat Citibank din centrul Manhattanului pentru a retrage niște bani. Aparatul mi-a respins cererea cu următorul mesaj:

Nu vă pot da 130 de dolari pentru că am doar bancnote de 50 și 20 de dolari. Vă rugăm să alegeți o altă sumă.”

Desigur 130$ = 50$ + 4 x 20$.

Cititorii sunt invitați să trimită mai multe exemple de matematică discutabilă.

Nouă provocare. Care este cel mai mare număr pozitiv pe care îl puteți reprezenta cu trei simboluri matematice standard distincte, cum ar fi 8×9? Cel mai mic?

Întoarceți răspunsurile, comentariile și noile întrebări prin e-mail la [email protected], pentru a fi eligibil pentru Flatland și alte premii de carte. Răspunsurile câștigătoare vor apărea în următorul Math Chat. Math Chat apare în prima și a treia zi de joi a fiecărei luni. Pagina de pornire a profesorului Morgan este la www.williams.edu/Mathematics/fmorgan.

Cartea MATH CHAT BOOK, care include un Concurs de 1000 de dolari pentru cartea Math Chat, întrebări și răspunsuri, precum și o listă a câștigătorilor provocărilor anterioare, este acum disponibilă de la MAA (800-331-1622).

Lista lui Raymond Hettinger cu cele 293 de moduri de a face mărunțiș pentru un dolar:

1 : 0 0 0 0 0 0 0 100 (0 dolari, 0 semidolari, 0 sferturi, 0 monede de 10 cenți, 0
nickels, 100 de penny)
2 : 0 0 0 0 1 95
3 : 0 0 0 0 2 90
4 : 0 0 0 0 3 85
5 : 0 0 0 0 4 80
6 : 0 0 0 0 5 75
7 : 0 0 0 0 6 70
8 : 0 0 0 0 7 65
9 : 0 0 0 0 8 60
10 : 0 0 0 0 9 55
11 : 0 0 0 0 10 50
12 : 0 0 0 0 11 45
13 : 0 0 0 0 12 40
14 : 0 0 0 0 13 35
15 : 0 0 0 0 14 30
16 : 0 0 0 0 15 25
17 : 0 0 0 0 16 20
18 : 0 0 0 0 17 15
19 : 0 0 0 0 18 10
20 : 0 0 0 0 19 5
21 : 0 0 0 0 20 0
22 : 0 0 0 1 0 90
23 : 0 0 0 1 1 85
24 : 0 0 0 1 2 80
25 : 0 0 0 1 3 75
26 : 0 0 0 1 4 70
27 : 0 0 0 1 5 65
28 : 0 0 0 1 6 60
29 : 0 0 0 1 7 55
30 : 0 0 0 1 8 50
31 : 0 0 0 1 9 45
32 : 0 0 0 1 10 40
33 : 0 0 0 1 11 35
34 : 0 0 0 1 12 30
35 : 0 0 0 1 13 25
36 : 0 0 0 1 14 20
37 : 0 0 0 1 15 15
38 : 0 0 0 1 16 10
39 : 0 0 0 1 17 5
40 : 0 0 0 1 18 0
41 : 0 0 0 2 0 80
42 : 0 0 0 2 1 75
43 : 0 0 0 2 2 70
44 : 0 0 0 2 3 65
45 : 0 0 0 2 4 60
46 : 0 0 0 2 5 55
47 : 0 0 0 2 6 50
48 : 0 0 0 2 7 45
49 : 0 0 0 2 8 40
50 : 0 0 0 2 9 35
51 : 0 0 0 2 10 30
52 : 0 0 0 2 11 25
53 : 0 0 0 2 12 20
54 : 0 0 0 2 13 15
55 : 0 0 0 2 14 10
56 : 0 0 0 2 15 5
57 : 0 0 0 2 16 0
58 : 0 0 0 3 0 70
59 : 0 0 0 3 1 65
60 : 0 0 0 3 2 60
61 : 0 0 0 3 3 55
62 : 0 0 0 3 4 50
63 : 0 0 0 3 5 45
64 : 0 0 0 3 6 40
65 : 0 0 0 3 7 35
66 : 0 0 0 3 8 30
67 : 0 0 0 3 9 25
68 : 0 0 0 3 10 20
69 : 0 0 0 3 11 15
70 : 0 0 0 3 12 10
71 : 0 0 0 3 13 5
72 : 0 0 0 3 14 0
73 : 0 0 0 4 0 60
74 : 0 0 0 4 1 55
75 : 0 0 0 4 2 50
76 : 0 0 0 4 3 45
77 : 0 0 0 4 4 40
78 : 0 0 0 4 5 35
79 : 0 0 0 4 6 30
80 : 0 0 0 4 7 25
81 : 0 0 0 4 8 20
82 : 0 0 0 4 9 15
83 : 0 0 0 4 10 10
84 : 0 0 0 4 11 5
85 : 0 0 0 4 12 0
86 : 0 0 0 5 0 50
87 : 0 0 0 5 1 45
88 : 0 0 0 5 2 40
89 : 0 0 0 5 3 35
90 : 0 0 0 5 4 30
91 : 0 0 0 5 5 25
92 : 0 0 0 5 6 20
93 : 0 0 0 5 7 15
94 : 0 0 0 5 8 10
95 : 0 0 0 5 9 5
96 : 0 0 0 5 10 0
97 : 0 0 0 6 0 40
98 : 0 0 0 6 1 35
99 : 0 0 0 6 2 30
100 : 0 0 0 6 3 25
101 : 0 0 0 6 4 20
102 : 0 0 0 6 5 15
103 : 0 0 0 6 6 10
104 : 0 0 0 6 7 5
105 : 0 0 0 6 8 0
106 : 0 0 0 7 0 30
107 : 0 0 0 7 1 25
108 : 0 0 0 7 2 20
109 : 0 0 0 7 3 15
110 : 0 0 0 7 4 10
111 : 0 0 0 7 5 5
112 : 0 0 0 7 6 0
113 : 0 0 0 8 0 20
114 : 0 0 0 8 1 15
115 : 0 0 0 8 2 10
116 : 0 0 0 8 3 5
117 : 0 0 0 8 4 0
118 : 0 0 0 9 0 10
119 : 0 0 0 9 1 5
120 : 0 0 0 9 2 0
121 : 0 0 0 10 0 0
122 : 0 0 1 0 0 75
123 : 0 0 1 0 1 70
124 : 0 0 1 0 2 65
125 : 0 0 1 0 3 60
126 : 0 0 1 0 4 55
127 : 0 0 1 0 5 50
128 : 0 0 1 0 6 45
129 : 0 0 1 0 7 40
130 : 0 0 1 0 8 35
131 : 0 0 1 0 9 30
132 : 0 0 1 0 10 25
133 : 0 0 1 0 11 20
134 : 0 0 1 0 12 15
135 : 0 0 1 0 13 10
136 : 0 0 1 0 14 5
137 : 0 0 1 0 15 0
138 : 0 0 1 1 0 65
139 : 0 0 1 1 1 60
140 : 0 0 1 1 2 55
141 : 0 0 1 1 3 50
142 : 0 0 1 1 4 45
143 : 0 0 1 1 5 40
144 : 0 0 1 1 6 35
145 : 0 0 1 1 7 30
146 : 0 0 1 1 8 25
147 : 0 0 1 1 9 20
148 : 0 0 1 1 10 15
149 : 0 0 1 1 11 10
150 : 0 0 1 1 12 5
151 : 0 0 1 1 13 0
152 : 0 0 1 2 0 55
153 : 0 0 1 2 1 50
154 : 0 0 1 2 2 45
155 : 0 0 1 2 3 40
156 : 0 0 1 2 4 35
157 : 0 0 1 2 5 30
158 : 0 0 1 2 6 25
159 : 0 0 1 2 7 20
160 : 0 0 1 2 8 15
161 : 0 0 1 2 9 10
162 : 0 0 1 2 10 5
163 : 0 0 1 2 11 0
164 : 0 0 1 3 0 45
165 : 0 0 1 3 1 40
166 : 0 0 1 3 2 35
167 : 0 0 1 3 3 30
168 : 0 0 1 3 4 25
169 : 0 0 1 3 5 20
170 : 0 0 1 3 6 15
171 : 0 0 1 3 7 10
172 : 0 0 1 3 8 5
173 : 0 0 1 3 9 0
174 : 0 0 1 4 0 35
175 : 0 0 1 4 1 30
176 : 0 0 1 4 2 25
177 : 0 0 1 4 3 20
178 : 0 0 1 4 4 15
179 : 0 0 1 4 5 10
180 : 0 0 1 4 6 5
181 : 0 0 1 4 7 0
182 : 0 0 1 5 0 25
183 : 0 0 1 5 1 20
184 : 0 0 1 5 2 15
185 : 0 0 1 5 3 10
186 : 0 0 1 5 4 5
187 : 0 0 1 5 5 0
188 : 0 0 1 6 0 15
189 : 0 0 1 6 1 10
190 : 0 0 1 6 2 5
191 : 0 0 1 6 3 0
192 : 0 0 1 7 0 5
193 : 0 0 1 7 1 0
194 : 0 0 2 0 0 50
195 : 0 0 2 0 1 45
196 : 0 0 2 0 2 40
197 : 0 0 2 0 3 35
198 : 0 0 2 0 4 30
199 : 0 0 2 0 5 25
200 : 0 0 2 0 6 20
201 : 0 0 2 0 7 15
202 : 0 0 2 0 8 10
203 : 0 0 2 0 9 5
204 : 0 0 2 0 10 0
205 : 0 0 2 1 0 40
206 : 0 0 2 1 1 35
207 : 0 0 2 1 2 30
208 : 0 0 2 1 3 25
209 : 0 0 2 1 4 20
210 : 0 0 2 1 5 15
211 : 0 0 2 1 6 10
212 : 0 0 2 1 7 5
213 : 0 0 2 1 8 0
214 : 0 0 2 2 0 30
215 : 0 0 2 2 1 25
216 : 0 0 2 2 2 20
217 : 0 0 2 2 3 15
218 : 0 0 2 2 4 10
219 : 0 0 2 2 5 5
220 : 0 0 2 2 6 0
221 : 0 0 2 3 0 20
222 : 0 0 2 3 1 15
223 : 0 0 2 3 2 10
224 : 0 0 2 3 3 5
225 : 0 0 2 3 4 0
226 : 0 0 2 4 0 10
227 : 0 0 2 4 1 5
228 : 0 0 2 4 2 0
229 : 0 0 2 5 0 0
230 : 0 0 3 0 0 25
231 : 0 0 3 0 1 20
232 : 0 0 3 0 2 15
233 : 0 0 3 0 3 10
234 : 0 0 3 0 4 5
235 : 0 0 3 0 5 0
236 : 0 0 3 1 0 15
237 : 0 0 3 1 1 10
238 : 0 0 3 1 2 5
239 : 0 0 3 1 3 0
240 : 0 0 3 2 0 5
241 : 0 0 3 2 1 0
242 : 0 0 4 0 0 0
243 : 0 1 0 0 0 50
244 : 0 1 0 0 1 45
245 : 0 1 0 0 2 40
246 : 0 1 0 0 3 35
247 : 0 1 0 0 4 30
248 : 0 1 0 0 5 25
249 : 0 1 0 0 6 20
250 : 0 1 0 0 7 15
251 : 0 1 0 0 8 10
252 : 0 1 0 0 9 5
253 : 0 1 0 0 10 0
254 : 0 1 0 1 0 40
255 : 0 1 0 1 1 35
256 : 0 1 0 1 2 30
257 : 0 1 0 1 3 25
258 : 0 1 0 1 4 20
259 : 0 1 0 1 5 15
260 : 0 1 0 1 6 10
261 : 0 1 0 1 7 5
262 : 0 1 0 1 8 0
263 : 0 1 0 2 0 30
264 : 0 1 0 2 1 25
265 : 0 1 0 2 2 20
266 : 0 1 0 2 3 15
267 : 0 1 0 2 4 10
268 : 0 1 0 2 5 5
269 : 0 1 0 2 6 0
270 : 0 1 0 3 0 20
271 : 0 1 0 3 1 15
272 : 0 1 0 3 2 10
273 : 0 1 0 3 3 5
274 : 0 1 0 3 4 0
275 : 0 1 0 4 0 10
276 : 0 1 0 4 1 5
277 : 0 1 0 4 2 0
278 : 0 1 0 5 0 0
279 : 0 1 1 0 0 25
280 : 0 1 1 0 1 20
281 : 0 1 1 0 2 15
282 : 0 1 1 0 3 10
283 : 0 1 1 0 4 5
284 : 0 1 1 0 5 0
285 : 0 1 1 1 0 15
286 : 0 1 1 1 1 10
287 : 0 1 1 1 2 5
288 : 0 1 1 1 3 0
289 : 0 1 1 2 0 5
290 : 0 1 1 2 1 0
291 : 0 1 2 0 0 0
292 : 0 2 0 0 0 0
293 : 1 0 0 0 0 0