MATHCHAT

Den 19. april 2001

Gammel udfordring (Joe Shipman). Larry King sagde i sin USA Today-klumme, at der er 293 måder at lave byttepenge for en dollar på. Er dette korrekt? (Antag, at der kun er tale om de nuværende møntværdier.)

Svar. Ja, hvis man tæller en 1-dollar-mønt med i byttepenge. Raymond Hettinger har opstillet en liste over alle 293 muligheder, som er vedlagt i slutningen af kolonnen. Michael Caulfield talte de 292 muligheder ud over en 1-dollar-mønt op på følgende måde:

Givet at der skal bruges 1 halv dollar, er der 50 kombinationer:
en anden halv dollar (1 måde)
2 kvartaler (1 måde)
1 kvart med: 2 dimes (2 måder), 1 dime (4) eller 0 dimes (6).
0 quarters med: 2 mønter (2 måder), 1 dime (4) eller 0 dimes (6): 5 dimes (1), 4 (3), 3 (5), 2 (7), 1 (9) eller 0 (11).

Givet at der ikke anvendes halve dollars, er der 242 kombinationer:
4 quarters (1 måde)
3 quarters med:
4 quarters (1 måde)
3 quarters med:
5 dimes (1 måde), 4 (3), 3 (5), 2 (7), 1 (9), eller 0 (11): 2 dimes (2 måder), 1 (4) eller 0 (6).
2 quarters med: 1 (4) eller 0 (6).
2 quarters med: 5 dimes (1), 4 (3), 3 (5), 2 (7), 1 (9) eller 0 (11).
1 quarter med: 2 (7), 1 (9) eller 0 (11): 7 dimes (2), 6 (4), 5 (6), 4 (8), 3 (10), 2 (12), 1 (14), 0 (16))
0 kvartaler med: 1 (2), 6 (4), 5 (6), 4 (8), 3 (10), 2 (12), 1 (14), 0 (16), 0 (16): 10 dimes (1), 9 (3), 8 (5), 7 (7), 6 (9), 5 (11), 4 (13), 3 (15), 2 (17), 1 (19), 0 (21).

Torsten Sillke har diskuteret, hvordan sådanne beregninger kan udføres med genererende funktioner. Se Herbert’s Wilf’s “Lectures on Integer Partitions” (side 10) på http://www.math.upenn.edu/~wilf Svaret på vores problem (293) er koefficienten af x^100 i den reciprokke af følgende:

(1-x)(1-x5)(1-x10)(1-x25)(1-x50)(1-x100)

Al Zimmermann gav følgende tabel over antallet af måder, hvorpå man kan veksle forskellige valutaenheder til mindre valutaenheder:

Møntenhed Antal måder at lave byttepenge på
0
1
10¢ 3
25¢ 12
50¢ 49
$1 292
$2 2,728
$5 111,022
$10 3,237,134
$20 155,848,897
$50 58,853,234,018
$100 9,823,546,661,905

Zimmermann tilføjede: Jeg tillod $2-sedler. Jeg gjorde ikke forskel på 1$-mønter og 1$-sedler i byttepenge. Jeg tænkte over det og besluttede, at hvis jeg gjorde forskel, så burde jeg også skelne mellem de 50 forskellige kvartaler, der nu udstedes. Og det ønskede jeg virkelig ikke at gøre.

I forlængelse af Caulfield og Zimmermann og i modsætning til Larry King siger Walter Wright, at en dollarmønt ikke kan betragtes som byttepenge for en dollarseddel: Webster’s New World Dictionary definerer byttepenge som “et antal mønter eller sedler, hvis samlede værdi er lig med en enkelt større mønt eller seddel.”

Matematik, der giver anledning til spørgsmål. Al Zimmermann rapporterer, at: “For ca. tre år siden gik jeg til en Citibank-automat i Midtown Manhattan for at hæve nogle kontanter. Automaten afviste min anmodning med følgende besked:

Jeg kan ikke give dig 130 dollars, fordi jeg kun har sedler i værdierne 50 dollars og 20 dollars. Vælg venligst et andet beløb.”

Selvfølgelig er $130 = $50 + 4 x $20.

Læsere opfordres til at indsende flere eksempler på tvivlsom matematik.

Ny udfordring. Hvad er det største positive tal, som du kan repræsentere med tre forskellige matematiske standardsymboler, f.eks. 8×9? Det mindste?

Send svar, kommentarer og nye spørgsmål pr. e-mail til [email protected], for at komme i betragtning til Flatland og andre bogpriser. De vindende svar vil blive offentliggjort i det næste Math Chat. Math Chat udkommer den første og tredje torsdag i hver måned. Professor Morgans hjemmeside findes på www.williams.edu/Mathematics/fmorgan.

Den MATH CHAT BOOK, der indeholder en MATH CHAT Book QUEST til $1000, spørgsmål og svar samt en liste over tidligere vindere af en udfordring, kan nu fås ved henvendelse til MAA (800-331-1622).

Raymond Hettingers liste over de 293 måder at lave byttepenge for en dollar på:

1 : 0 0 0 0 0 0 0 100 (0 dollars, 0 halvdollars, 0 quarters, 0 dimes, 0
nickels, 100 pennies)
2 : 0 0 0 0 1 95
3 : 0 0 0 0 2 90
4 : 0 0 0 0 3 85
5 : 0 0 0 0 4 80
6 : 0 0 0 0 5 75
7 : 0 0 0 0 6 70
8 : 0 0 0 0 7 65
9 : 0 0 0 0 8 60
10 : 0 0 0 0 9 55
11 : 0 0 0 0 10 50
12 : 0 0 0 0 11 45
13 : 0 0 0 0 12 40
14 : 0 0 0 0 13 35
15 : 0 0 0 0 14 30
16 : 0 0 0 0 15 25
17 : 0 0 0 0 16 20
18 : 0 0 0 0 17 15
19 : 0 0 0 0 18 10
20 : 0 0 0 0 19 5
21 : 0 0 0 0 20 0
22 : 0 0 0 1 0 90
23 : 0 0 0 1 1 85
24 : 0 0 0 1 2 80
25 : 0 0 0 1 3 75
26 : 0 0 0 1 4 70
27 : 0 0 0 1 5 65
28 : 0 0 0 1 6 60
29 : 0 0 0 1 7 55
30 : 0 0 0 1 8 50
31 : 0 0 0 1 9 45
32 : 0 0 0 1 10 40
33 : 0 0 0 1 11 35
34 : 0 0 0 1 12 30
35 : 0 0 0 1 13 25
36 : 0 0 0 1 14 20
37 : 0 0 0 1 15 15
38 : 0 0 0 1 16 10
39 : 0 0 0 1 17 5
40 : 0 0 0 1 18 0
41 : 0 0 0 2 0 80
42 : 0 0 0 2 1 75
43 : 0 0 0 2 2 70
44 : 0 0 0 2 3 65
45 : 0 0 0 2 4 60
46 : 0 0 0 2 5 55
47 : 0 0 0 2 6 50
48 : 0 0 0 2 7 45
49 : 0 0 0 2 8 40
50 : 0 0 0 2 9 35
51 : 0 0 0 2 10 30
52 : 0 0 0 2 11 25
53 : 0 0 0 2 12 20
54 : 0 0 0 2 13 15
55 : 0 0 0 2 14 10
56 : 0 0 0 2 15 5
57 : 0 0 0 2 16 0
58 : 0 0 0 3 0 70
59 : 0 0 0 3 1 65
60 : 0 0 0 3 2 60
61 : 0 0 0 3 3 55
62 : 0 0 0 3 4 50
63 : 0 0 0 3 5 45
64 : 0 0 0 3 6 40
65 : 0 0 0 3 7 35
66 : 0 0 0 3 8 30
67 : 0 0 0 3 9 25
68 : 0 0 0 3 10 20
69 : 0 0 0 3 11 15
70 : 0 0 0 3 12 10
71 : 0 0 0 3 13 5
72 : 0 0 0 3 14 0
73 : 0 0 0 4 0 60
74 : 0 0 0 4 1 55
75 : 0 0 0 4 2 50
76 : 0 0 0 4 3 45
77 : 0 0 0 4 4 40
78 : 0 0 0 4 5 35
79 : 0 0 0 4 6 30
80 : 0 0 0 4 7 25
81 : 0 0 0 4 8 20
82 : 0 0 0 4 9 15
83 : 0 0 0 4 10 10
84 : 0 0 0 4 11 5
85 : 0 0 0 4 12 0
86 : 0 0 0 5 0 50
87 : 0 0 0 5 1 45
88 : 0 0 0 5 2 40
89 : 0 0 0 5 3 35
90 : 0 0 0 5 4 30
91 : 0 0 0 5 5 25
92 : 0 0 0 5 6 20
93 : 0 0 0 5 7 15
94 : 0 0 0 5 8 10
95 : 0 0 0 5 9 5
96 : 0 0 0 5 10 0
97 : 0 0 0 6 0 40
98 : 0 0 0 6 1 35
99 : 0 0 0 6 2 30
100 : 0 0 0 6 3 25
101 : 0 0 0 6 4 20
102 : 0 0 0 6 5 15
103 : 0 0 0 6 6 10
104 : 0 0 0 6 7 5
105 : 0 0 0 6 8 0
106 : 0 0 0 7 0 30
107 : 0 0 0 7 1 25
108 : 0 0 0 7 2 20
109 : 0 0 0 7 3 15
110 : 0 0 0 7 4 10
111 : 0 0 0 7 5 5
112 : 0 0 0 7 6 0
113 : 0 0 0 8 0 20
114 : 0 0 0 8 1 15
115 : 0 0 0 8 2 10
116 : 0 0 0 8 3 5
117 : 0 0 0 8 4 0
118 : 0 0 0 9 0 10
119 : 0 0 0 9 1 5
120 : 0 0 0 9 2 0
121 : 0 0 0 10 0 0
122 : 0 0 1 0 0 75
123 : 0 0 1 0 1 70
124 : 0 0 1 0 2 65
125 : 0 0 1 0 3 60
126 : 0 0 1 0 4 55
127 : 0 0 1 0 5 50
128 : 0 0 1 0 6 45
129 : 0 0 1 0 7 40
130 : 0 0 1 0 8 35
131 : 0 0 1 0 9 30
132 : 0 0 1 0 10 25
133 : 0 0 1 0 11 20
134 : 0 0 1 0 12 15
135 : 0 0 1 0 13 10
136 : 0 0 1 0 14 5
137 : 0 0 1 0 15 0
138 : 0 0 1 1 0 65
139 : 0 0 1 1 1 60
140 : 0 0 1 1 2 55
141 : 0 0 1 1 3 50
142 : 0 0 1 1 4 45
143 : 0 0 1 1 5 40
144 : 0 0 1 1 6 35
145 : 0 0 1 1 7 30
146 : 0 0 1 1 8 25
147 : 0 0 1 1 9 20
148 : 0 0 1 1 10 15
149 : 0 0 1 1 11 10
150 : 0 0 1 1 12 5
151 : 0 0 1 1 13 0
152 : 0 0 1 2 0 55
153 : 0 0 1 2 1 50
154 : 0 0 1 2 2 45
155 : 0 0 1 2 3 40
156 : 0 0 1 2 4 35
157 : 0 0 1 2 5 30
158 : 0 0 1 2 6 25
159 : 0 0 1 2 7 20
160 : 0 0 1 2 8 15
161 : 0 0 1 2 9 10
162 : 0 0 1 2 10 5
163 : 0 0 1 2 11 0
164 : 0 0 1 3 0 45
165 : 0 0 1 3 1 40
166 : 0 0 1 3 2 35
167 : 0 0 1 3 3 30
168 : 0 0 1 3 4 25
169 : 0 0 1 3 5 20
170 : 0 0 1 3 6 15
171 : 0 0 1 3 7 10
172 : 0 0 1 3 8 5
173 : 0 0 1 3 9 0
174 : 0 0 1 4 0 35
175 : 0 0 1 4 1 30
176 : 0 0 1 4 2 25
177 : 0 0 1 4 3 20
178 : 0 0 1 4 4 15
179 : 0 0 1 4 5 10
180 : 0 0 1 4 6 5
181 : 0 0 1 4 7 0
182 : 0 0 1 5 0 25
183 : 0 0 1 5 1 20
184 : 0 0 1 5 2 15
185 : 0 0 1 5 3 10
186 : 0 0 1 5 4 5
187 : 0 0 1 5 5 0
188 : 0 0 1 6 0 15
189 : 0 0 1 6 1 10
190 : 0 0 1 6 2 5
191 : 0 0 1 6 3 0
192 : 0 0 1 7 0 5
193 : 0 0 1 7 1 0
194 : 0 0 2 0 0 50
195 : 0 0 2 0 1 45
196 : 0 0 2 0 2 40
197 : 0 0 2 0 3 35
198 : 0 0 2 0 4 30
199 : 0 0 2 0 5 25
200 : 0 0 2 0 6 20
201 : 0 0 2 0 7 15
202 : 0 0 2 0 8 10
203 : 0 0 2 0 9 5
204 : 0 0 2 0 10 0
205 : 0 0 2 1 0 40
206 : 0 0 2 1 1 35
207 : 0 0 2 1 2 30
208 : 0 0 2 1 3 25
209 : 0 0 2 1 4 20
210 : 0 0 2 1 5 15
211 : 0 0 2 1 6 10
212 : 0 0 2 1 7 5
213 : 0 0 2 1 8 0
214 : 0 0 2 2 0 30
215 : 0 0 2 2 1 25
216 : 0 0 2 2 2 20
217 : 0 0 2 2 3 15
218 : 0 0 2 2 4 10
219 : 0 0 2 2 5 5
220 : 0 0 2 2 6 0
221 : 0 0 2 3 0 20
222 : 0 0 2 3 1 15
223 : 0 0 2 3 2 10
224 : 0 0 2 3 3 5
225 : 0 0 2 3 4 0
226 : 0 0 2 4 0 10
227 : 0 0 2 4 1 5
228 : 0 0 2 4 2 0
229 : 0 0 2 5 0 0
230 : 0 0 3 0 0 25
231 : 0 0 3 0 1 20
232 : 0 0 3 0 2 15
233 : 0 0 3 0 3 10
234 : 0 0 3 0 4 5
235 : 0 0 3 0 5 0
236 : 0 0 3 1 0 15
237 : 0 0 3 1 1 10
238 : 0 0 3 1 2 5
239 : 0 0 3 1 3 0
240 : 0 0 3 2 0 5
241 : 0 0 3 2 1 0
242 : 0 0 4 0 0 0
243 : 0 1 0 0 0 50
244 : 0 1 0 0 1 45
245 : 0 1 0 0 2 40
246 : 0 1 0 0 3 35
247 : 0 1 0 0 4 30
248 : 0 1 0 0 5 25
249 : 0 1 0 0 6 20
250 : 0 1 0 0 7 15
251 : 0 1 0 0 8 10
252 : 0 1 0 0 9 5
253 : 0 1 0 0 10 0
254 : 0 1 0 1 0 40
255 : 0 1 0 1 1 35
256 : 0 1 0 1 2 30
257 : 0 1 0 1 3 25
258 : 0 1 0 1 4 20
259 : 0 1 0 1 5 15
260 : 0 1 0 1 6 10
261 : 0 1 0 1 7 5
262 : 0 1 0 1 8 0
263 : 0 1 0 2 0 30
264 : 0 1 0 2 1 25
265 : 0 1 0 2 2 20
266 : 0 1 0 2 3 15
267 : 0 1 0 2 4 10
268 : 0 1 0 2 5 5
269 : 0 1 0 2 6 0
270 : 0 1 0 3 0 20
271 : 0 1 0 3 1 15
272 : 0 1 0 3 2 10
273 : 0 1 0 3 3 5
274 : 0 1 0 3 4 0
275 : 0 1 0 4 0 10
276 : 0 1 0 4 1 5
277 : 0 1 0 4 2 0
278 : 0 1 0 5 0 0
279 : 0 1 1 0 0 25
280 : 0 1 1 0 1 20
281 : 0 1 1 0 2 15
282 : 0 1 1 0 3 10
283 : 0 1 1 0 4 5
284 : 0 1 1 0 5 0
285 : 0 1 1 1 0 15
286 : 0 1 1 1 1 10
287 : 0 1 1 1 2 5
288 : 0 1 1 1 3 0
289 : 0 1 1 2 0 5
290 : 0 1 1 2 1 0
291 : 0 1 2 0 0 0
292 : 0 2 0 0 0 0
293 : 1 0 0 0 0 0